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Introduction:
The earth is perhaps the most obvious exam

ple of a porous medium. Flows in porous me-
dia are part of our everyday lives, from wa-
ter in the garden, to oil in underground reser-
voirs. The mathematical modeling of flow in
porous media, particularly with the ever increas
ing power of computers, is playing a fundamen-
tal and increasingly important role in the forecast
ing of petroleum reservoir performance, ground-
water supply, and subsurface contaminant flow
A critical underlying problem in the numerical
treatment of these models is the need to resolvj
the multiscale structure of heterogeneous geolod
ical formations. Unfortunately, the length scaleg
observed in sedimentary laminae range from thg
millimeter scale upward, while the simulation do-
main may be on the order several kilometers. Ag
a result, fully resolved simulations are computa-
tionally intractable, and yet the fine-scale varia-
tions of the model's parameters (e.g., structurg
and orientation of laminae) significantly affect the
coarse-scale properties of the solution (e.g., ave
age flow rates). This complex interaction of sig-
nificantly different length scales is not unique to
flows in porous media, but arises in many othel
disciplines, and is currently studied by T-7 in sev-
eral other important contexts; including compos-

ite materials, global atmospheric and ocean circuf

lation models, and in solid-solid phase transitions

Homogenization or Upscaling:
The objective of a homogenization or upscal-

ing procedure is to define an approximate matht

ematical model in which theffectiveproperties

of the medium vary on a coarse scale suitablg

for efficient computation, while preserving cer-
tain coarse-scale properties of the fine-scale sg

1%

lution (e.g., average flow rates). To homogenize

A randomly generated permeability field that ex-
hibits variations over several orders of magnitude
is shown in the top image. Brighter colors indi-
cate a higher permeability. MGH has been ap-
plied to this data to generate two successively
coarser representations of the permeability that
are suitable for numerical simulation (the middle
and bottom images).
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or upscale heterogeneous media, the macroscop
flow model, which contains parameters that vary
on the microscopic or fine-scale, asveraged in
some sense, over the microscopic length scales.
For some material properties, upscaling is triv-
ial. For example, the average porosity or satj
uration of a volume can be accurately approxi-
mated by the arithmetic average of all the porosi;
ties or saturations within that volume. However,
this simplistic approach fails for other medium
characteristics, such as the effective permeabi
ity, which is the fundamental parameter in single-

phase saturated flow modeling. Even when finef

scale variations in the permeability are small rel
ative to the scale of the homogenized cell vol-
ume, the geostatistical arithmetic, geometric o
harmonic averages of the fine-scale permeabil
ity can differ by orders of magnitude from the
true effective permeability. In addition, the in-
creasing use of geostatistical techniques to infe
physically meaningful fine-scale realizations of
heterogeneous geological formations from spars
and inherently multi-scale measurement data d¢
mands more accurate and efficient homogenizg
tion procedures.

Multigrid:

The numerical treatment of a mathematical
model ultimately relies on the solution of a sys-
tem of discrete, often linear, equations. Although
in principle, direct methods could be used to solvg
such a system, this is computationally intractablg
for large two- and three-dimensional problems.
Instead computational efficiency is achieved with
iterative solution algorithms such as multigrid.

Multigrid methods gained recognition in the
late 1970’s as an efficient algorithm for the so-
lution of the discrete linear systems that arisg
from models of diffusive phenomena (e.g., heat
conduction, neutron diffusion, single-phase sat
urated flow). These methods achieve their effi
ciency through the recursive use of successivel
coarser discrete problems (i.e., a sequence (
coarse-grid discrete operators). Unfortunately
early multigrid algorithms were fragile, their ef-
ficiency strongly dependent on the variability of

ic in the early 1980’s, much of it in T-7, led to the
first multigrid algorithms that could be used reli-
ably for a large class of practical problems. The
key to the success of these robB&ck Boxmeth-
ods was the use of the fine-scale discrete model to
construct, through a variational principle, the suc-
cessively coarser coarse-grid operators.

Multigrid Homogenization:
Currently, T-7 is actively involved in both the

modeling of multiscale phenomena and the de-
velopment of multilevel iterative solution algo-
rithms. The development of the multigrid ho-
mogenization (MGH) algorithm for single-phase
saturated flows was motivated by the observation
that equivalent multi-scale issues arise in both
fields. In particular, the robustness and efficiency
of the Black Box multigrid method strongly sug-
gested that its variational coarsening procedure
produced excellent coarse-grid operators. Thus,
it was hypothesized that the coarsening procedure
implicit to Black Box multigrid could be inter-
preted as a homogenization procedure that pro-
duced a coarse-scale discrete model, from which
the coarse-scale model parameters (i.e., the per-
meability) could be extracted.

This interpretation led to the MGH algorithm
[1], which has demonstrated its efficiency and ac-
curacy for fine-scale periodic media in two di-
mensions. We are currently investigating its ap-
plication to general fine-scale structures in two-
and three-dimensional media. In addition, we are
confident that this interpretation will lead to fur-
ther improvements in the variational coarsening
procedure, and hence, to the Black Box multigrid
algorithm.
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the model’s coefficients. Considerable researc
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